Homework 2: Generating Random Variables

Instructions: Be sure to electronically submit your answers in pdf format for the written part and as an R file for the coding part. You may work together and discuss the problems with your classmates, but write up your final answers entirely on your own.

1 Written Part

- 1. Let X and Y be a real-valued random variables with Y = g(X), where $g : \mathbb{R} \to \mathbb{R}$ is a monotonic increasing function. Find and prove a formula for the quantile function of Y in terms of F_X and g.
- 2. Let $X \sim \text{Exp}(\lambda)$, and let $Y = \sqrt{X}$.
 - (a) What is the density function f_Y ?
 - (b) What is the distribution function F_Y ? Verify that $F_Y(0) = 0$ and $F_Y(\infty) = 1$.
 - (c) What is the quantile function F_Y^{-1} ?
 - (d) Compute the mean, μ_Y , and variance, σ_Y^2 . Hint: Use integration by parts.

2 R Simulation

- 3. Write a function called BoxMuller(n) that generates n standard normal random numbers using the Box-Muller method. For simplicity you may assume n is even.
- 4. Write a function that uses the Inverse Transform Method to generate n random numbers from the distribution F_Y from Problem 2 above (λ should be a parameter to the function).
- 5. Write a function that uses the Acceptance-Rejection Method to generate n random numbers from a Beta (α, β) distribution $(\alpha, \beta$ should be parameters to the function).
- 6. For each of your functions in Problems 3-5 do the following:
 - (a) Generate a vector of 10,000 random numbers. Use parameters $\lambda = 1$ and $\alpha = 5$, $\beta = 2$.
 - (b) Plot a histogram of the generated data with the theoretical density function superimposed for comparison.
 - (c) Plot a Q-Q plot of the generated data vs. the theoretical quantiles.
 - (d) Compute the mean and variance of your generated data and compare it to the theoretical values.